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We examine the conditions for appearance of a symmetry breaking bifurcation in damped and periodically
driven pendulums in the case of strong damping. We show that symmetry breaking, unlike other nonlinear
phenomena, can exist at high dissipation. We prove that symmetry breaking phases exist between phases of
symmetric normal and symmetric inverted oscillations. We find that symmetry broken solutions occupy a
smaller region of the pendulum’s parameter space in comparison to the statements made in earlier consider-
ations fMcDonald and Plischke, Phys. Rev. B27, 201 s1983dg. Our research on symmetry breaking in a
strongly damped pendulum is relevant to an understanding of the phenomena of dynamic symmetry breaking
and rectification in pure ac driven semiconductor superlattices.
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I. INTRODUCTION

Periodically forced and damped pendulum

ü + gu̇ + sinu = f cosvt s1d

is one of the most important paradigms in modern nonlinear
sciencef1g. In solid state physics, the pendulum model well
describes, for instance, the nonlinear dynamics of Josephson
junctions of superconducting materialsf2,3g.

The fairly popular model of a resistively shunted Joseph-
son junctionf4,5g which is equivalent to an underdamped
pendulum,g!1, demonstrates very rich nonlinear dynamics.

The rotational states of the pendulumku̇lÞ0 saveraging over
a period T=2p /vd, correspond to the generation of a dc
voltage across the junction driven by an ac current without a
dc component. Moreover, phase-locked states of the pendu-

lum, ku̇l=n/m sn and m are integersd, correspond to quan-
tized values of the dc voltage in the Josephson junction
model. This effect, known as the inverse ac Josephson effect
f6,7g, has already found an application in the design of the
modern voltage standardf3,8g. Chaotic vibrational and rota-
tional motions of an underdamped pendulum,g!1, are also
well known in Josephson junctionsf9,10g sfor a review see
f11gd. Surprisingly, the optimum operating point for the volt-
age standards insv , fd parameter space is located near a
region of chaosf3g. Therefore, knowledge of conditions for
transition to chaos is important for the optimization of a
zero-bias voltage standard and related Josephson devices
f3,8g.

One of the most often observed roads to chaos is the
period doubling scenariof12g. The pendulums1d belongs to
a class of symmetric dynamical systems with invariance un-
der the transformationsu→−u and t→ t+T/2. Therefore, a
symmetry breaking bifurcation is a necessary precursor to
period doubling f10,13,14g. This bifurcation describes a

sharp transition from a symmetric limit cycle satisfying

ust + T/2d = − ustd + 2pk, k is an integer, s2d

to symmetry broken limit cycles, for which this equality is
invalid. As easily seen from Eq.s1d, steady-state symmetric
solutionsustd can have only odd harmonics ofv in their
Fourier expansion series, together with a zero harmonickul
that is equal to either 0 orp. The solutions withkul=0 are
symmetric oscillations around the stable positionu=0, while
kul=p corresponds to oscillations of an inverted pendulum.
In contrast, for symmetry broken solutions both even and
odd harmonics are possible andkul is some constant differ-
ent from 0 orp. Typically, the symmetry broken trajectories
of the underdamped pendulum occupy a very small range of
parametersvf just near the transition to chaosf10,13,15g. A
detailed analytical analysis of a transition from symmetric
oscillations to symmetry broken oscillations near the chaos
border in the underdamped pendulum,g!1 and v,1, is
presented inf16g. A different, more mathematically oriented,
approach to the bifurcations of symmetric solutions of Eq.
s1d with a general antiperiodic drive term can be found in
f17g.

In spite of a widely spread belief that symmetry breaking
is always connected to a transition to chaosf14g, this bifur-
cation is still possible forg!1 but v.1 f18g. In these con-
ditions chaos is impossible and symmetry breaking arises
near transitions from normal to inverted states of the pendu-
lum f18g.

For a strong dampingsg*1d, neither chaoticf19,20g nor
rotational phase-locked statesf10g can exist anymore. How-
ever, the presence of symmetry broken states of an over-
damped pendulum, which obviously are not related to a tran-
sition to chaos, has been briefly mentioned earlier in two
papers devoted to the dynamics of Josephson junctions
f13,21g. It has been reportedf13g that these symmetry broken
trajectories occupy a quite large part of the parameter space
sv , fd. This interesting aspect of the pendulum dynamics at
strong dissipation did not get further attention so far, prob-
ably for two main reasons. First, for Josephson junctions, the
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pendulum’s solutions at strong damping are not physically
interesting. Second,u and kul do not correspond to any di-
rectly measurable physical variables in the junctions.

However, it has been shown recently that another type of
solid state microstructure—semiconductor superlattices sub-
jected to a high-frequency electric field—can demonstrate
very rich nonlinear dynamics similar to the dynamics of Jo-
sephson junctionsf22–27g. In particular, an analog of the
inverse ac Josephson effect has been predicted for the super-
latticesf23,25g. Moreover, within some reasonable approxi-
mations the nonlinear dynamics of an ac driven semiconduc-
tor superlattice in the miniband transport regime is governed
by a periodically forced and damped pendulumf26,27g. For
superlattices with realistic scattering constantf28,29g, the ef-
fective damping in the corresponding pendulum model is not
small: g*1. An overdamped pendulum also arises in the
models of lateral semiconductor superlatticesf30g.

Importantly, in contrast to the case of Josephson junc-
tions, the voltage across a superlattice is proportional to both
the velocityu̇ and the coordinateu of the pendulums1d f26g.
Therefore, even if rotations are impossible,ku̇lÞ0, a dc volt-
age across the superlattice can still be generated due to con-
tributions of symmetry broken swinging oscillations with
kulÞ lp sl =0,1d. For a strong damping, this is the only
mechanism that can contribute to a rectification of the tera-
hertz signal in the semiconductor superlatticef26g.

The existence of physical situations where the symmetry
breaking in the pendulum at strong dissipation can be physi-
cally important is the main motivation of our present work.
Combining the analytical technique of truncated Fourier ex-
pansionf31g with numerical simulations we find the condi-
tions for symmetry breaking at strong damping. We describe
a scenario of transition from symmetric to asymmetric oscil-
lations at strong damping. We found that symmetry broken
sSBd oscillations form an intermediate stage between sym-
metric normalsNd and symmetric invertedsId oscillations,
i.e., N→SB→ I →SB→N. Note that this is different from
the transitionsN→SB→N with a large symmetry breaking
phase even in the overdamped case, which have been re-
ported in f13g. We observed a relatively small symmetry
breaking phase; with an increase of damping the ranges of
driving amplitude and frequency resulting in symmetry
breaking decrease. Moreover, symmetry breaking does not
exist in the overdamped case described by the first order
differential equation. In this case only normal and inverted
oscillations survive. We presented simple formulas providing
a good approximation for bifurcation points between differ-
ent types of symmetricsN→ Id and asymmetricsN→SB,I
→SBd transitions in wide ranges of the frequency and the
strength of alternating force.

The organization of this paper is as follows. We start with
a consideration of an overdamped pendulum without an in-

ertial termsü=0d. The analysis of this model appears to be
the most simple and transparent. In the subsequent Section
III, we present analytic and numerical results on symmetry
breaking bifurcations in a pendulum with an inertial term.
The final section of the paper is devoted to a summary and a
brief discussion on applications in the physics of semicon-
ductors. Some mathematical details that have been omitted
can be found inf32g.

II. FIRST ORDER PENDULUM EQUATION

When damping is very strong we can neglect the second
order derivative in Eq.s1d and get the first order overdamped
pendulum equation

u̇ + b sinu = h cosvt s3d

with b=1/g andh= f /g. Numerical integration of this equa-
tion shows that only two types of stable periodic motion
exist: normal and inverted modes of oscillations. Solutions
corresponding to these modes are all symmetric withkul=0
and p for the normal and inverted mode solutions, respec-
tively. Figure 1 shows a plot of regions of the two different
modes in thesf ,vd parameter plane which exhibits a fan
shaped pattern of alternating, disjoint areas of normal and
inverted mode oscillations. The transition between the two
modes is a sharp one and no intermittent states are found in
spite of rigorous attempts. In particular, no symmetry broken
regions exist.

A simple analytic calculation verifies the absence of sym-
metry broken solutions and provides a good approximate
condition for the transition. The analysis is done under the
assumption that the solution is well described by the trial
function

u = A0 + A1 cossvt + a1d. s4d

We begin by applying a linear stability analysis to find the
regions of stable symmetric motion. Straightforward analysis
leads to the stability condition

b cosA0J0sA1d . 0, s5d

whereJ0 is the zeroth order Bessel function. If for the zeroth
harmonic we have cosA0,0, then J0sA1d.0 must apply,
and vice versa. Both symmetric solutions lose their stability
at the sameA1, which is a root of the Bessel functionJ0. As
the Bessel functions and the zeros ofJ0 will appear fre-
quently, we adopt the shorthand notations

FIG. 1. sColor onlined First order pendulum, withb=1/2: re-
gions of inverted and normal mode oscillations. White areas corre-
spond to normal oscillations withkul=0 and gray areas to the in-
verted modekul=p. No symmetry broken solutions are found.
Solid sredd lines indicate the analytic prediction for mode bound-
aries, Eq.s8d, which are plotted forn=1, . . . ,6.
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J0sAsndd = 0, Jk
snd ; JksAsndd, s6d

where Asnd is specifically thenth root of J0 and Jk
snd is Jk

evaluated atAsnd.
From the equation of motion, Eq.s3d, we can derive using

the ansatzs4d the relation

J0sA1dsinA0 = 0. s7d

From Eq. s7d it follows that if A0Þ0,p, then J0sA1d=0.
However, the stability conditions5d indicates that this case is
not stable, as the perturbation does not decay. Therefore it is
evident that asymmetric trajectories are not possible.

Within the applicability of our first order approximation,
the only stable solutions are the ones withA0=0 or p. Ad-
ditionally, the pattern of normal and inverted mode solutions
is revealed. Starting from a forcingh low enough, i.e., one
for which J0sA1d.0, Eq. s5d implies thatA0=0. WhenA1

crossesAs1d, the sign must change in both factors, leading to
A0=p. As h is further increased,A1 reachesAs2d and the
oscillations return to the normal mode.

The boundaries of the normal and inverted oscillations
can even be written in an explicit analytic form. From Eq.s3d
the expansion coefficientA1 in Eq. s4d can be found as a
function of the pendulum parameters. SubstitutingA1=Asnd

we get

4b2J1
snd2 + v2Asnd2 = h2. s8d

Now we can compare our analytic results with numerical
data. The boundaries of transitions between normal and in-
verted modes of oscillation, following from Eq.s8d, are su-
perimposed on the numerical results in Fig. 1. We see that
the the equalityJ0sA1d=0 and the prediction of Eq.s8d hold
well at the transition lines with reasonable accuracy every-
where, except in the case of low frequency. In the limiting
case of very low-frequency drive, the trial solution in the
simplest forms4d can become invalid and effects of higher
harmonics should be taken into account.

III. SYMMETRY BREAKING IN THE PENDULUM AT
STRONG DISSIPATION

A. Numerical integration

Now we return to the pendulum with inertia, Eq.s1d. We
start with a review of our numerical results. For all compu-
tations, standard double precision floating point arithmetic
has been used. Numerical integration was performed using a
standard 4/5 order Runge-Kutta algorithm with Cash-Karp
parametersf33g.

The study of thesv , fd parameter plane reveals a fan
shaped structure of regions of normal and inverted mode
oscillations, similar to that of the first order pendulum. In
addition to the alternating pattern of the symmetric solutions,
narrow regions of symmetry broken solutions have now
emerged on the interfaces between the regions. For the solu-
tions in these regions we have observed nonzero values of
the zero-harmonic components along with nonzero even har-
monics, which are requisites of a symmetry broken solution.

In Fig. 2 an example of a typical phase-space portrait is
plotted. Therein, both solutionsu1 andu2, which are related

via the symmetryu1std=−u2st+T/2d, are shown. For these
symmetric solutions the orbits are centered around an integer
multiple of p and can either overlap or be separated by a
multiple of 2p. This is shown in the insets on the right,
where orbits just before and after the symmetry breaking
region are plotted. In the lower right corner,f =4.50, an in-
verted mode solution is depicted. The oscillations are cen-
tered around ±p and the orbits are separated by 2p, making
them in fact one and the same. For forcing off =4.65 the
asymmetry of the orbit is clearly visible as well as the shifted
center of the oscillations. Finally, atf =4.80, the solution is
symmetric again with the two orbits now overlapping, shown
on the upper right inset.

The different modes on the parameter plane are depicted
in Fig. 3, where we have choseng=2 for the damping coef-
ficient. Symmetry broken regions appear around both transi-
tions, from normal to inverted and back, thus separating the
normal and inverted mode regions completely. The regions

FIG. 2. sColor onlined Phase-space portrait of a typical symme-
try broken solution. To highlight the asymmetry both solutionsu1

fsolid sreddg andu2 fdashedsbluedg, which are related via the sym-
metry u1std=−u2st+T/2d, are plotted. Takingf as the control pa-
rameter, the insets on the right show the orbit just before and after
the symmetry breaking. This is then=2 transition; therefore it is
from inverted to normal mode. The fixed parameters areg=2 and
v=0.4.

FIG. 3. sColor onlined Second order pendulum equation with
g=2: regions of inverted and normal state oscillations. Sandwiched
between them are the regions of symmetry breaking. Solidsredd
lines indicate analytic prediction of Eqs.s12d and s10d.
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are not wide, in contrast to what was reported inf13,34g.
Increasing the damping will cause them to get more narrow.

A closer examination is shown in Fig. 4, where we have
fixed v=0.2 andg=3. Harmonic componentsA0 andA1 are
plotted against the drive amplitudef, and the sequence of
modes of solutions is made more clear. The normal mode
bifurcates into asymmetric solutions whenA1 is close to a
root of the Bessel functionJ0sA1d. This symmetry broken
state persists only for a short interval of variablef, ending in
an inverted mode, whenA0 has reachedp. Small deviations
from an approximately linear response ofA1 to a change off
can be seen at the transitions from normal to inverted mode.

Close-ups of the symmetry broken range provide more
insight. The following two examples are depicted in Fig. 5.
The first case we consider is of low-frequency drive,v
=0.2 andg=3. Symmetry breaking starts for moderate forc-
ing f =1.8413 and withA1 slightly larger thanAs1d, the first
root of J0. The curve ofA0 for the stable symmetric solution
bifurcates from zero into a curve corresponding to a stable
asymmetric solution. This is accompanied by the emergence
of even harmonics in the Fourier spectrum and a sudden stop
in the increase ofA1. Further increases off causeA1 to
decrease, whileA2 traces a sugar-loaf-shaped curve. It should
be noted that the curve of the second harmonic reaches quite
high values,A2,0.6 at the maximum. The zero harmonic
varies continuously and monotonically from zero top. We
should note that actually two different stable solutions exist
in the symmetry breaking range, related to each other by the
symmetry. The initial values of the system determine which
branch the solution converges to after the initial transient.
Symmetry breaking ends in an inverted state atf =1.8773
with A1 just less thanAs1d.

In the second case we examine, we setv=4 andg=3. To
achieve symmetry breaking, one needs high values off. In
this case we havef =47.46. Again,A1 has just crossedAs1d

when the symmetric mode loses stability. Now the decrease
of A1 in the symmetry broken region is less dramatic than in

the low-frequency case. Furthermore, the second harmonic
component is almost negligible. In other respects, this case
does not differ from the previous example.

B. Analytic analysis

In this subsection we present the explicit analytic form of
conditions for the bifurcation to occur and provide a picture
of the scenario of symmetry breaking that is consistent with
the numerical results. Here, as in Sec. II, we assume that
oscillations of the pendulum can be described by a trial func-
tion in the forms4d.

Following the method off10,31g, we linearize Eq.s1d
and, with appropriate approximations, put it into the form of
the Mathieu equation. Using the existing knowledge of the
solutions of Mathieu equation, we derive the following con-
ditions for bifurcations from symmetric oscillations:

J0sA1d + s− 1dk 2

g2 + 4v2J2sA1d2 = 0, s9d

wherek=0 corresponds to a normal mode, whilek=1 marks
an inverted mode. Notice that Eq.s9d is the same condition
for loss of stability as the one for the first order pendulum,
J0sA1d=0, but now with an additional term. This term only
becomes significant whenA1 is close to a root of the Bessel
function J0. As a consequence, now there are two separate
bifurcation points corresponding to the two different sym-
metric modes. These are located rather close to the roots of
J0. Clearly, the dynamics of the second and the first order
pendulums are similar away from the regions of transition,
justifying the correspondence to the analysis of the previous
section.

The explicit solution of Eq.s9d in terms of amplitudeA1
can now be found. Owing to the fact that the latter term in
Eq. s9d is small, we get for the critical values ofA1

HAN
snd

AI
snd J = Asnd ±

2J2
snd2

J1
sndsg2 + 4v2d 7 xsnd , s10d

xsnd = 2J2
sndsJ1

snd − J3
sndd. s11d

HereAN
snd andAI

snd are, respectively, the critical amplitudes of
normal and inverted modes for which symmetric oscillations
become unstable. A small asymmetry with respect toAsnd in
the critical A1 due to the termxsnd can be neglected within
the applicability of Eq.s10d without loss of qualitative agree-
ment. This is implicitly assumed hereafter in this section.

In transitions from the normal to the next inverted mode,
the critical value of the amplitudeA1 for the inverted mode is
less than that of the normal mode:AI

snd,AN
snd. The reverse

applies for transitions from an inverted phase to the next
normal phase region, i.e.,AN

snd,AI
snd. ThereforeA1 must de-

crease as the boundary of the first symmetry broken region is
crossed, and thenth region starts whenA1.Asnd and ends
whenA1,Asnd. This kind of behavior ofA1 is in good agree-
ment with the numerical results shown in Fig. 5. Following
Eq. s10d the difference betweenAN

snd andAI
snd decreases with

an increase of the frequencyv. This explains why the range
of A1 within the symmetry breaking region is wider in the

FIG. 4. sColor onlined The amplitudes of the two first harmonic
componentsA0 and A1 plotted againstf. A0 flower curvesbluedg
alternates between0 and p, while A1 fupper curvesreddg shows
nearly linear dependence on the parameterf. Small deviations from
this are seen near the transitions between normal and inverted
states, along with anA0 component that is not equal to 0,p. To
guide the eye, dashed lines connecting the pointsA1sfd=Asnd on the
vertical axis to the correspondingf on the horizontal axis are
drawn. The fixed pendulum parameters areg=3 andv=0.2.
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low-frequency case in comparison with the case of high-
frequency drivefsee Figs. 5sad and 5sbdg.

We turn now to finding surfaces in the parameter space
sg ,v , fd on which the symmetry breaking bifurcation hap-
pens. First, we substitute the trial solutions4d in the equation
of motion s1d and in the first harmonic approximation derive
the dependence of the amplitudeA1 on the pendulum param-
etersg, v, and f. Second, substituting critical values ofA1
from Eq. s10d and takingA0=kp, we have

f2 = sgvA1d2 + fv2A1 ± 2J1sA1dg2, HA1 = AI
snd,

A1 = AN
snd,
J s12d

for bifurcations from inverted and normal modes, respec-
tively. Taking the difference of these two criticalf does in-
dicate that one symmetric mode loses stability before the
other gains it. This eliminates the possibility of hysteresis
around the symmetry breaking transition and shows that both
symmetric phases cannot be stable for the same pendulum
parameters.

Equations12d shows remarkable agreement with our nu-
merical results for a very wide range of parameters. As an
example we refer to Fig. 3, where the analytic predictions for
the boundaries of symmetry breaking regions are shown as
solid sredd lines. The best agreement is achieved forv*1 or
large f. These conditions also provide the applicability of our
trial function s4d, which has been proved numerically as well
as analytically by including the third harmonic into the trial
function f32g. We should also note that good qualitative
agreement between our formulas and numerical results exists
even for low frequencies,v.0.1. Moreover, our analytic
results give a reasonable approximation even in parameter
space regimes beyond the overdamped case, providingf is
sufficiently large andv is not very low. This suggests that as
the damping or frequency is lowered from sufficiently high
values, the symmetry broken regions evolve into regions of
complex and chaotic dynamics with alternating normal and
inverted phase motion separating them.

Now we can summarize the main results of the present
section. Taking the alternating force strengthf as the control
parameter, we can report the following behavior. A stable
inverted or normal mode becomes unstable at an amplitude
of stationary oscillations,A1, that is just greater thanAsnd and
symmetry breaking starts. Increasingf further causesA1 to
decrease, as the bifurcation to the next mode should occur
whenA1 is less thanAsnd. The critical values ofA1 are given
by Eq. s10d with the critical parameters of Eq.s12d. These
critical points approach a common valueAsnd, as damping is
increased.

IV. CONCLUSION

In summary, we confirmed the existence of the symmetry
breaking phenomenon in the strongly damped pendulum.
The symmetry breaking states form a necessary stage in tran-
sitions from the normal to the inverted and from the inverted
to the normal states of the overdamped pendulum. The sce-
nario of transitions from the symmetric to the symmetry bro-
ken states, and vice versa, appears to be similar to the case of

FIG. 5. sColor onlined The amplitudes of the two first harmonic
components as functions of the drive amplitudef. sad Low fre-
quency and weak drive,g=3 andv=0.2; sbd high frequency and
strong drive,g=3 andv=4. Notice the relatively large amplitude of
the second harmonic component in the low-frequency case.
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the underdamped pendulum without chaosf18g. Also, our
results compare well to those off17g. Therein the sufficient
conditions for the symmetric solutions to be the only peri-
odic solutions were derived and it was shown that the stabil-
ity of the symmetric solutions alternates between the regions
where the given requirements do not hold.

Our results also demonstrate that an inertial term in the
pendulum is a requisite of symmetry breaking. On a more
hypothetical note, it could then be possible to achieve sym-
metry breaking similar to what is described here, if higher
even derivatives or/and additional nonlinear damping terms
are included.

These results can be directly applied to studies of the
mechanism of terahertz radiation rectification in semicon-
ductor superlatticesf25g because this system has underlying
pendulum dynamicsf26,30g. Note that in some cases a pen-
dulumlike equation of the third orderf35,36g and a pendu-
lum equation with a nonlinear damping term supporting the

symmetry of the problemf37g naturally arise in different
models of semiconductor superlattices. We speculate that
swinging symmetry broken oscillations in these superlattice
models also correspond to spontaneous generation of a dc
voltage or dc current. A related detailed consideration will be
published elsewhere. It is worth noticing also the importance
of the symmetry breaking bifurcations in the physics of ac
driven bulk semiconductors with different types of nonlinear-
ity f38g. Our results can also be useful in the development of
this area of semiconductor nonlinear dynamics.
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