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Symmetry breaking in a driven and strongly damped pendulum
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We examine the conditions for appearance of a symmetry breaking bifurcation in damped and periodically
driven pendulums in the case of strong damping. We show that symmetry breaking, unlike other nonlinear
phenomena, can exist at high dissipation. We prove that symmetry breaking phases exist between phases of
symmetric normal and symmetric inverted oscillations. We find that symmetry broken solutions occupy a
smaller region of the pendulum’s parameter space in comparison to the statements made in earlier consider-
ations[McDonald and Plischke, Phys. Rev. B7, 201 (1983]. Our research on symmetry breaking in a
strongly damped pendulum is relevant to an understanding of the phenomena of dynamic symmetry breaking
and rectification in pure ac driven semiconductor superlattices.
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I. INTRODUCTION sharp transition from a symmetric limit cycle satisfying
Periodically forced and damped pendulum Ot +T/2) =- 6(t) + 27k, Kis an integer,  (2)
o+ 79+Si” 0=f coswt (1) to symmetry broken limit cycles, for which this equality is

is one of the most important paradigms in modern nonlineamvahd' As easily seen from Ed1), steady-state symmetric

science 1]. In solid state physics, the pendulum model weIISOIUt_Ions o) can havc_a only odd har_momcs af in the|r_
describes, for instance, the nonlinear dynamics of JosephsdiPUrier expansion series, together with a zero harméfic
junctions of superconducting materid® 3]. that is equal to either O ofr. The solutions with#)=0 are
The fa|r|y popu|ar model of a resistive|y shunted Joseph.symmetric oscillations around the stable pOSitH}F'O, while
son junction[4,5] which is equivalent to an underdamped (6)= corresponds to oscillations of an inverted pendulum.
pendulum,y< 1, demonstrates very rich nonlinear dynamics.In contrast, for symmetry broken solutions both even and

The rotational states of the penduls + 0 (averaging over ©dd harmonics are possible af@ is some constant differ-
a period T=27/w), correspond to the generation of a dc ent from O orm. Typically, the symmetry broken trajectories
voltage across the junction driven by an ac current without &' the underdamped pendulum occupy a very small range of

dc component. Moreover, phase-locked states of the pendf@rametersf just near the transition to chaps0,13,13. A
| <i9>-n/m (n andm are integers correspond to quan- detailed analytical analysis of a transition from symmetric
um, (6= 9 P q oscillations to symmetry broken oscillations near the chaos

tized values of the dc voltage in the Josephson junctiony,rger in the underdamped pendulup<l and 0 <1, is
model. This effect, known as the inverse ac Josephson effeffesented ifi16]. A different, more mathematically oriented,

[6,7], has already found an application in the design of the,n,qach to the bifurcations of symmetric solutions of Eq.
r_nodern vc_JItage standaf@®,8]. Chaotic vibrational and rota- (1) with a general antiperiodic drive term can be found in
tional motions of an underdamped penduluyrs 1, are also [17].

well known in Josephson junction9,10] (for a review see In spite of a widely spread belief that symmetry breaking
[11]). Surprisingly, the optimum operating point for the volt- j5 5yays connected to a transition to chédé], this bifur-

age standards ifiw,f) parameter space is located near acaiion js still possible fory<1 butw>1[18]. In these con-
region of chaog3]. Therefore, knowledge of conditions for gitions chaos is impossible and symmetry breaking arises

transition to chaos is important for the optimization of apear transitions from normal to inverted states of the pendu-
zero-bias voltage standard and related Josephson devicgsy [1g].

[3,8]. For a strong dampingy= 1), neither chaoti¢19,20 nor

One of the most often observed roads to chaos is thgyiational phase-locked statg0] can exist anymore. How-
period doubling scenarifl2]. The pendulun(l) belongs t0  gyer the presence of symmetry broken states of an over-

a class of symmetri_c dynamical systems with invariance UNgamped pendulum, which obviously are not related to a tran-
der the transformationd— -6 andt—t+T/2. Therefore, @ gjiion to chaos, has been briefly mentioned earlier in two

symmetry breaking bifurcation is a necessary precursor aners devoted to the dynamics of Josephson junctions
period doubling[10,13,14. This bifurcation describes a [13,21]. It has been reportdd 3] that these symmetry broken
trajectories occupy a quite large part of the parameter space
(w,f). This interesting aspect of the pendulum dynamics at
*Electronic address: jisohata@student.oulu.fi strong dissipation did not get further attention so far, prob-
"Electronic address: Kirill. Alekseev@oulu fi ably for two main reasons. First, for Josephson junctions, the
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pendulum’s solutions at strong damping are not physically
interesting. Second} and{#) do not correspond to any di-
rectly measurable physical variables in the junctions.
However, it has been shown recently that another type of
solid state microstructure—semiconductor superlattices sub-
jected to a high-frequency electric field—can demonstrate 0.6
very rich nonlinear dynamics similar to the dynamics of Jo- ®
sephson junction$22—-27. In particular, an analog of the
inverse ac Josephson effect has been predicted for the super-
lattices[23,25. Moreover, within some reasonable approxi-
mations the nonlinear dynamics of an ac driven semiconduc- 0.2
tor superlattice in the miniband transport regime is governed
by a periodically forced and damped pendul[@6,27]. For
superlattices with realistic scattering const#1&,29, the ef-
fective damping in the corresponding pendulum model is not , ) ,
small: y=1. An overdamped pendulum also arises in the = FIG. 1. (Color onling First order pendulum, witig=1/2: re-
models of lateral semiconductor superlatti€2€]. gions of inverted and_ no_rmal m_ode oscillations. White areas corre-
Importantly, in contrast to the case of Josephson junc_spond to normal oscillations wittw)=0 and gray areas to the in-
tions, the voltage across a superlattice is proportional to botHerngd mo<|j_e<0>;7;._ No s%/mmetlry_brokzr_l S_O'U:('O”S a(;e :)ounc(ij.
the velocity# and the coordinaté of the pepdulun(l) [26]. :rci) ésy(lgeqd_)@)'?s:h;gh ';?;epfogezn%ﬁ“:cl?f ,uét.lon or mode boun
Therefore, even if rotations are impossillé),+ 0, a dc volt-
age across the superlattice can stiII_ be; genera}ted_ due to con- II. FIRST ORDER PENDULUM EQUATION
tributions of symmetry broken swinging oscillations with
(@) #1m (1=0,1). For a strong damping, this is the only ~ When damping is very strong we can neglect the second
mechanism that can contribute to a rectification of the teraerder derivative in Eq(1) and get the first order overdamped

hertz signal in the semiconductor superlat{i2é]. pendulum equation
The existence of physical situations where the symmetry )
breaking in the pendulum at strong dissipation can be physi- 0+ Bsin = ncoswt 3

cally important is the main motivation of our present work.

Combining the analytical technique of truncated Fourier exWith 8=1/y and »=f/vy. Numerical integration of this equa-
pansion[31] with numerical simulations we find the condi- tion shows that only two types of stable periodic motion
tions for symmetry breaking at strong damping. We describe&Xist: normal and inverted modes of oscillations. Solutions
a scenario of transition from symmetric to asymmetric oscil-corresponding to these modes are all symmetric b0
lations at strong damping. We found that symmetry brokerand = for the normal and inverted mode solutions, respec-
(SB) oscillations form an intermediate stage between symtively. Figure 1 shows a plot of regions of the two different
metric normal(N) and symmetric invertedl) oscillations, modes in the(f,w) parameter plane which exhibits a fan
i.e., N—SB—1—SB—N. Note that this is different from shaped pattern of alternating, disjoint areas of normal and
the transitionsN— SB— N with a large symmetry breaking jnyerted mode oscillations. The transition between the two
phase even in the overdamped case, which have been rgjydes is a sharp one and no intermittent states are found in
ported in[13]. We observed a relatively small symmetry it of rigorous attempts. In particular, no symmetry broken
breaking phase; with an increase of damping the ranges q gions exist.

driving amplitude and frequency resulting in symmetry A simple analytic calculation verifies the absence of sym-

breaking decrease. Moreover, symmetry breaking does n . . .
exist in the overdamped case described by the first ordé?}I1 etry broken solutions and provides a good approximate

differential equation. In this case only normal and invertedcond't'o?. fortrt]hi tt;]ansmlo?. Th_e an?llyc?ls 'S.t?odn% ur:gerttht?
oscillations survive. We presented simple formulas providin ssumption that the solution IS well described by the tna

a good approximation for bifurcation points between differ- unction

ent types of symmetri¢€N—1) and asymmetri¢dN— SB,| 0= Ag+ A, codwt + ay). (4)

— SB) transitions in wide ranges of the frequency and the

strength of alternating force. We begin by applying a linear stability analysis to find the

The organization of this paper is as follows. We start withregions of stable symmetric motion. Straightforward analysis
a consideration of an overdamped pendulum without an inleads to the stability condition

ertial term(.0:0). The analysis of this model appears to bg B cosAJ(A,) > 0, (5)

the most simple and transparent. In the subsequent Section

ll, we present analytic and numerical results on symmetrywhereJ, is the zeroth order Bessel function. If for the zeroth
breaking bifurcations in a pendulum with an inertial term.harmonic we have co&, <0, thenJy(A;) >0 must apply,
The final section of the paper is devoted to a summary and and vice versa. Both symmetric solutions lose their stability
brief discussion on applications in the physics of semiconat the samé\;, which is a root of the Bessel functialy. As
ductors. Some mathematical details that have been omitteitie Bessel functions and the zeros Jyf will appear fre-
can be found irf32]. quently, we adopt the shorthand notations
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J(AM)=0, J=HAM), (6) o . | r=480
) 2 SN,
where A" is specifically thenth root of J, and J\" is J, e \>
evaluated aA™. 21 &
From the equation of motion, E€3), we can derive using = 2 N #
the ansatZ4) the relation . 1 4
o 01 : i 2 0 2
Jo(Ay)sinAy=0. (7) % , =480
From Eq.(7) it follows that if Ay#0,, then Jo(A;)=0. 2] e il < >
However, the stability conditiofb) indicates that this case is ) /_,_,?_,»"'/V
not stable, as the perturbation does not decay. Therefore it is =
evident that asymmetric trajectories are not possible. '4_3 s 4 5 % =2 & T3 % 3

Within the applicability of our first order approximation, 0 [r]
the only stable solutions are the ones wity=0 or 7. Ad-
ditionally, the pattern of normal and inverted mode solutions FIG. 2. (Color online Phase-space portrait of a typical symme-
is revealed. Starting from a forcing low enough, i.e., one try broken solution. To highlight the asymmetry both solutighs
for which Jo(A;) >0, Eq. (5 implies thatA;=0. WhenA; [solid (red)] and ¢, [dashedblue)], which are related via the sym-
crossesAY, the sign must change in both factors, leading tometry 6,(t)=-6,(t+T/2), are plotted. Taking as the control pa-
Ay=m. As 7 is further increasedA; reachesA® and the rameter, the insets on the right show the orbit just before and after
oscillations return to the normal mode. the symmetry breaking. This is the=2 transition; therefore it is
The boundaries of the normal and inverted oscillationgrom inverted to normal mode. The fixed parameters @ and
can even be written in an explicit analytic form. From Eg).  @=0.4.
the expansion coefficierd; in Eq. (4) can be found as a

function of the pendulum parameters. Substitutiage AW Via the symmetry6y(t)=—0,(t+T/2), are shown. For these
we get symmetric solutions the orbits are centered around an integer

) , multiple of 7= and can either overlap or be separated by a
4820 + ?AN" = 2. (8)  multiple of 2. This is shown in the insets on the right,

N i Its with . IWhere orbits just before and after the symmetry breaking
ow we can compare our analyic results with numerica region are plotted. In the lower right corndi4.50, an in-

data. The boundarle_s Of_ transitions between normal and "Nerted mode solution is depicted. The oscillations are cen-
ver'ged modes of oscnlanon, following from_ E¢), are su- tered around 4r and the orbits are separated by,2naking
perimposed on the numerical results. n Fig. 1. We see th"’ﬁwem in fact one and the same. For forcingfef4.65 the
the the equallty]o_(_Al) :.0 and _the prediction of Eq8) hold asymmetry of the orbit is clearly visible as well as the shifted
well at the transition lines with reasonable accuracy everyzanier of the oscillations. Finally, 4£4.80, the solution is

where, except in the case of low frequency. In the limiting gy mmetric again with the two orbits now overlapping, shown
case of very low-frequency d(lve, .the trial solution in the o the upper right inset.
simplest form(4) can become invalid and effects of higher  tnq different modes on the parameter plane are depicted
harmonics should be taken into account. in Fig. 3, where we have chosers2 for the damping coef-
. SYMMETRY BREAKING IN THE PENDULUM AT f@cient. Symmetry brol_<en regions appear around both_transi-
STRONG DISSIPATION tions, from normal to inverted and back, thus separating the

normal and inverted mode regions completely. The regions
A. Numerical integration

Now we return to the pendulum with inertia, Ed). We

start with a review of our numerical results. For all compu-

1.0+
Symmetry broken

tations, standard double precision floating point arithmetic 0-3'*@@ ‘
has been used. Numerical integration was performed using a
standard 4/5 order Runge-Kutta algorithm with Cash-Karp 0.6
parameter$33]. 3 Inverted|

The study of the(w,f) parameter plane reveals a fan / - B
shaped structure of regions of normal and inverted mode 04 7 = |
oscillations, similar to that of the first order pendulum. In / /////f,’:
addition to the alternating pattern of the symmetric solutions, 0.2 //// e
narrow regions of symmetry broken solutions have now ///42 //’:—/’iff/‘é’fﬂ”/’;??:?a—ijo

emerged on the interfaces between the regions. For the solu-
tions in these regions we have observed nonzero values of
the zero-harmonic components along with nonzero even har- FIG. 3. (Color online@ Second order pendulum equation with
monics, which are requisites of a symmetry broken solutiony=2: regions of inverted and normal state oscillations. Sandwiched

In Fig. 2 an example of a typical phase-space portrait ietween them are the regions of symmetry breaking. Sotid)
plotted. Therein, both solutiong and 6,, which are related lines indicate analytic prediction of Eq&l2) and(10).

f

066206-3



ISOHATALA et al. PHYSICAL REVIEW E 71, 066206(2009

14.0 —A, the low-frequency case. Furthermore, the second harmonic
P I component is almost negligible. In other respects, this case
16“5 does not differ from the previous example.
< & B. Analytic analysis
- 7.0 . . o .
< L@ In this subsection we present the explicit analytic form of
- conditions for the bifurcation to occur and provide a picture
A0 of the scenario of symmetry breaking that is consistent with
the numerical results. Here, as in Sec. Il, we assume that
0.0

' ' ' T ' ! oscillations of the pendulum can be described by a trial func-
tion in the form(4).
Following the method 0f10,31], we linearize Eq.(1)
FIG. 4. (Color online The amplitudes of the two first harmonic and, with appropriate approximations, put it into the form of
componentsA, and A; plotted against. A [lower curve(blue)] the Mathieu equation. Using the existing knowledge of the
alternates betweefl and m, while A; [upper curve(red] shows  solutions of Mathieu equation, we derive the following con-
nearly linear dependence on the paramét&@mall deviations from  ditions for bifurcations from symmetric oscillations:
this are seen near the transitions between normal and inverted
states, along with a\, component that is not equal to &, To Jo(A) + (- 1)k
guide the eye, dashed lines connecting the pdits) =A™ on the oV

Y+ 4w?
vertical axis to the correspondinf on the horizontal axis are .
drawn. The fixed pendulum parameters gre3 andw=0.2. wherek=0 corresponds to a normal mode, whike1l marks

an inverted mode. Notice that E(P) is the same condition

are not wide, in contrast to what was reported[18,34. for loss of stability as the one fqr the first order pendulum,
Increasing the damping will cause them to get more narrow’o(A)=0, but now with an additional term. This term only

A closer examination is shown in Fig. 4, where we havebeco_mes significant whefy, is close to a root of the Bessel
fixed @=0.2 andy=3. Harmonic components, andA, are function Jo. As a consequence, now there are two separate
plotted against the drive amplitude and the sequence of blfurpatlon points corresponding to the two different sym-
modes of solutions is made more clear. The normal mod&€tric modes. These are located rather close to the roots of
bifurcates into asymmetric solutions whéyq is close to a Jo- Clearly, the dynamics of the second and the first order
root of the Bessel functiody(A,). This symmetry broken pen_du_lums are similar away from the regions of transition,
state persists only for a short interval of variablending in  Justifying the correspondence to the analysis of the previous
an inverted mode, whefy, has reachedr. Small deviations ~S€ction. _ , ,
from an approximately linear responseAfto a change of The explicit solution of Eq(9) in terms of amplitude?;
can be seen at the transitions from normal to inverted modé&@n Now be found. Owing to the fact that the latter term in

Close-ups of the symmetry broken range provide more=d- (9) is small, we get for the critical values &4

Jo(A)?=0, 9)

insight. The following two examples are depicted in Fig. 5. ) (n)2
\ ) exa . Al 23!
The first case we consider is of low-frequency drive, [ = * 5 , (10)
=0.2 andy=3. Symmetry breaking starts for moderate forc- A IV +40?) F X
ing f=1.8413 and withA; slightly larger thanA, the first
root of J,. The curve ofA, for the stable symmetric solution X =200 - 39, (11)

bifurcates from zero into a curve corresponding to a stable - ® . » )
asymmetric solution. This is accompanied by the emergencB€reAy andA, ™ are, respectively, the critical amplitudes of
of even harmonics in the Fourier spectrum and a sudden stdpPrmal and inverted modes for which symmetric oscillations
in the increase ofA;. Further increases of causeA, to ~ become unstable. A small asymmetry with respeoﬁ%_m_
decrease, whild, traces a sugar-loaf-shaped curve. It shouldthe critical A; due to the termy™ can be neglected within
be noted that the curve of the second harmonic reaches quite® applicability of Eq(10) without loss of qualitative agree-
high values,A,~0.6 at the maximum. The zero harmonic Ment. Th|s. is implicitly assumed hereafter |n.th|s section.
varies continuously and monotonically from zero#o We In transitions from the normal to the next inverted mode,
should note that actually two different stable solutions existhe critical value of the amplituda, for the inverted mode is
in the symmetry breaking range, related to each other by thiess than that of the normal moda\” <A\'. The reverse
symmetry. The initial values of the system determine whichapplies for transitions from an inverted phase to the next
branch the solution converges to after the initial transientnormal phase region, i.ea(hrl‘)<Af“). ThereforeA; must de-
Symmetry breaking ends in an inverted statefafl.8773  crease as the boundary of the first symmetry broken region is
with A just less tharA®M. crossed, and theth region starts wher\; >A™ and ends

In the second case we examine, weset andy=3. To  whenA; <A™, This kind of behavior of\; is in good agree-
achieve symmetry breaking, one needs high valuek &~ ment with the numerical results shown in Fig. 5. Following
this case we havé=47.46. Again,A; has just crossed® Eq. (10) the difference betweeAE\T) andAl(”) decreases with
when the symmetric mode loses stability. Now the decreasan increase of the frequenay This explains why the range
of A; in the symmetry broken region is less dramatic than inof A; within the symmetry breaking region is wider in the
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components as functions of the drive amplitutie(a) Low fre-
guency and weak drivey=3 and w=0.2; (b) high frequency and
strong drive,y=3 andw=4. Notice the relatively large amplitude of
the second harmonic component in the low-frequency case.

.88 1.90

.88 1.90

1.82 1.84 1.86 1.88 1.90

PHYSICAL REVIEW E 71, 066206(2005

low-frequency case in comparison with the case of high-
frequency drivgsee Figs. &) and §b)].

We turn now to finding surfaces in the parameter space
(v,w,f) on which the symmetry breaking bifurcation hap-
pens. First, we substitute the trial soluti@h in the equation
of motion (1) and in the first harmonic approximation derive
the dependence of the amplitude on the pendulum param-
etersvy, o, andf. Second, substituting critical values Af
from Eq.(10) and takingA,=k, we have
A =A",

Al = A(n) (12)

2= (ywA)? + [w?As £ 231(AD T, {
for bifurcations from inverted and normal modes, respec-
tively. Taking the difference of these two critichldoes in-
dicate that one symmetric mode loses stability before the
other gains it. This eliminates the possibility of hysteresis
around the symmetry breaking transition and shows that both
symmetric phases cannot be stable for the same pendulum
parameters.

Equation(12) shows remarkable agreement with our nu-
merical results for a very wide range of parameters. As an
example we refer to Fig. 3, where the analytic predictions for
the boundaries of symmetry breaking regions are shown as
solid (red) lines. The best agreement is achieveddez 1 or
largef. These conditions also provide the applicability of our
trial function (4), which has been proved numerically as well
as analytically by including the third harmonic into the trial
function [32]. We should also note that good qualitative
agreement between our formulas and numerical results exists
even for low frequenciesp=0.1. Moreover, our analytic
results give a reasonable approximation even in parameter
space regimes beyond the overdamped case, providiag
sufficiently large andv is not very low. This suggests that as
the damping or frequency is lowered from sufficiently high
values, the symmetry broken regions evolve into regions of
complex and chaotic dynamics with alternating normal and
inverted phase motion separating them.

Now we can summarize the main results of the present
section. Taking the alternating force strengths the control
parameter, we can report the following behavior. A stable
inverted or normal mode becomes unstable at an amplitude
of stationary oscillationsA,, that is just greater thaA™ and
symmetry breaking starts. Increasifidurther cause#\; to
decrease, as the bifurcation to the next mode should occur
whenA, is less tharA™. The critical values of\; are given
by Eg. (10) with the critical parameters of Eq12). These
critical points approach a common vala&’, as damping is
increased.

IV. CONCLUSION

In summary, we confirmed the existence of the symmetry
breaking phenomenon in the strongly damped pendulum.
The symmetry breaking states form a necessary stage in tran-
sitions from the normal to the inverted and from the inverted
to the normal states of the overdamped pendulum. The sce-
nario of transitions from the symmetric to the symmetry bro-
ken states, and vice versa, appears to be similar to the case of
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the underdamped pendulum without chd4d$8]. Also, our symmetry of the probleni37] naturally arise in different
results compare well to those pE7]. Therein the sufficient models of semiconductor superlattices. We speculate that
conditions for the symmetric solutions to be the only peri-swinging symmetry broken oscillations in these superlattice
odic solutions were derived and it was shown that the stabilmodels also correspond to spontaneous generation of a dc
ity of the symmetric solutions alternates between the regiongoltage or dc current. A related detailed consideration will be
where the given requirements do not hold. . published elsewhere. It is worth noticing also the importance

Our results also demonstrate that an inertial term in theyf the symmetry breaking bifurcations in the physics of ac
pendulum is a requisite of symmetry breaking. On a mor&yjyen pulk semiconductors with different types of nonlinear-
hypothetical note, it could then be possible to achieve symgy 13g] Our results can also be useful in the development of
metry breaking similar to what is described here, if h'gherthis area of semiconductor nonlinear dynamics.
even derivatives or/and additional nonlinear damping terms
are included.

These results can be directly applied to studies of the
mechanism of terahertz radiation rectification in semicon-
ductor superlatticeR25] because this system has underlying We thank G. Katriel for attracting our attention to Ref.
pendulum dynamic§26,30. Note that in some cases a pen-[17]. This research was partially supported by the Academy
dulumlike equation of the third ord¢B5,36 and a pendu- of Finland (Grants No. 1206063 and No. 100483nd the
lum equation with a nonlinear damping term supporting theAQDJJ Program of the European Science Foundation.
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